
TTC Confidential – Do Not Distribute

1

Database Test Automation 
Framework: Best Practices
Global Open-Source Practice

Prepared By: Pavel Marunin
Role: Senior Consultant
Email: pavel.marunin@ttcglobal.com

20/10/2022



TTC Confidential – Do Not Distribute

22

Agenda

1. About Me

2. System Under Test

3. Requirements

4. Why Make a Framework?

5. Framework Architecture

6. Benefits

7. Best Practices



TTC Confidential – Do Not Distribute

3

About Me | Pavel Marunin
• 3 University Degrees, Including:

o Master of Information Technology at University of Auckland

• 12 Years Experience in Testing:

o Manual Testing

o Test Automation

o Automation Framework Design

o Infrastructure Pipeline Design

o Test Environment Design

• 6 Certifications, Notably:

o ISTQB Advanced Test Manager

o ISTQB Advanced Level - Test Automation Engineer

o AWS Certified Cloud Practitioner

https://www.linkedin.com/in/pavel-marunin-989a8778/

Presenter Notes
Presentation Notes
These are some of the stats from my LinkedIn profile. I have lots of academic credentials and a background in testing and infrastructure. In the last few years my focus has been on framework and infrastructure design, and this presentation is about one of the frameworks I have designed recently.

https://www.linkedin.com/in/pavel-marunin-989a8778/


TTC Confidential – Do Not Distribute

4

System Under Test
• Extract, Transform and Load (ETL) data pipeline between Raw, Clean and Curated states

• Two disparate data sources: Dremio data lake and Amazon Athena

o Dremio supplies a JDBC driver

o Athena has its own native SDK

• Low trust in data quality at source

• Millions of records even in the pilot project

Presenter Notes
Presentation Notes
Let’s start with describing the system that we needed to test in one of our client’s projects to provide some context. The system was a part of a much larger enterprise-wide digital transformation program that, among other things, involved the implementation of a new Extract, Transform and Load data pipeline. Two external vendors would offload large volumes of data into the landing zone called Raw bucket. The in-house data pipeline would then process each vendor’s data between Raw, Clean and Curated states into a Unified Data Model to prepare it for analysis and reporting downstream. The two vendors used different incompatible data formats and different databases: Dremio data lake and Amazon Athena. There was low trust in data quality at source with lots of unknowns, and datasets contained millions of records even in the pilot project phase.



TTC Confidential – Do Not Distribute

5

Requirements
• The tests need to validate data transformation between states

• SQL result sets need to be compared:

o Between databases

o Between tables

o Between a table and a hardcoded dataset

• Full result sets with millions of records need to be validated in each test run

• Support for Snowflake Data Cloud likely required in the future

• Open source tools only

Presenter Notes
Presentation Notes
We needed to automate test scenarios for data transformation between Raw, Clean and Curated states. To achieve that, we would need to compare SQL result sets between different databases, between different tables in the same database and between a table and a hardcoded dataset that represented the expected result. Despite datasets containing millions of records, low trust in data quality at source ruled out random sampling and necessitated full result set comparison and validation. Further, due to the system under test being a part of a larger transformation project, we anticipated the need to also support Snowflake Data Cloud in our data validation tests in the future. Finally, the project only allowed open source tools. Needless to say, all this was easier said than done. 



TTC Confidential – Do Not Distribute

6

Why Make a Framework?

• Separate complexity between distinct problems:

• Business Logic Validation

• Database Connection

• Query Execution

• Result Set Iteration

• Row Comparison

• Encourage code reuse and simplify code maintenance

• Optimise performance on large datasets without changing test scripts

• Enable future Snowflake extension for other projects

Presenter Notes
Presentation Notes
Which made me think we needed another framework. Indeed, we had multiple distinct problems we needed to solve:Business logic validation in test scriptsEstablishing database connectionExecuting the queryIterating over the result setsComparing and validating rowsIt would be much easier to tackle one problem at a time. Extracting database-specific complexity into a separate framework would also encourage code reuse, simplify maintenance, let us optimise performance without changing test scripts and enable future extension to support Snowflake.



TTC Confidential – Do Not Distribute

7

Framework Architecture

Dremio Athena

Presenter Notes
Presentation Notes
And so I made the framework, and it looks like this. The architecture is hierarchical with the abstract parent class SqlQuery implementing result set validation and comparison logic based on abstract Java iterators. The results from the two queries are expected to be equal by default, but an optional function parameter can also be provided that describes custom business logic to be applied to each pair of rows to determine the comparison result. This parent class also implements Iterable interface, making every query in the framework a Java collection. This makes it possible to compare any query result set from any supported database to a hardcoded Cucumber data table from the test script, representing the expected result, out of the box by design. The architecture is also modular with each supported database connection implementing 3 classes:The database class that establishes connection and executes the queryThe iterator class that implements a Java Iterator, capable of returning one row in a generic intermediary format at a timeThe query class extends the abstract SqlQuery and creates the custom iterator required for result set comparison based on the given database connectionThere is also a class responsible for Athena authentication, which is not shown here for brevity. The test scripts would then need to further extend the database-specific query class from the framework to define test-specific query strings as required. This modular architecture enables easy framework extensions to support new databases, and I am currently working on Snowflake support.



TTC Confidential – Do Not Distribute

8

Benefits
• Abstract test scripts away from complex result set iteration logic, database connection and type conversion

• Seamlessly compare a SQL result set with a hardcoded collection, such as a Cucumber data table

• Pass business logic involved in result set validation as a function parameter or implement it in the queries

• Framework can deal with millions of records in reasonable time:

o Ballpark: 100,000 rows/min for Athena

• Extensible design requires only 3 new classes to support a new database, no change to comparison logic is needed

• Lots of issues found with data quality at source

Presenter Notes
Presentation Notes
The DB framework has proven to be quite useful for our project and enabled us to abstract test scripts away from result set iteration logic, database connection and type conversion, all of which are complex problems. Representing each query as a Java collection made it easy to compare SQL result sets with Cucumber data tables, which is very handy in certain test scenarios, such as schema checks. The business logic involved in result set validation can either be defined in a Java function and passed as a function parameter or implemented in the test-specific queries themselves, which gives the automation engineer involved in test implementation and execution some flexibility. The framework is optimised for performance and does not store the full result set in memory, relying instead on custom iterators. Thus, it can deal with a result set of any size and process about 100,000 rows/min. It is also easy to extend to support more databases as needed.



TTC Confidential – Do Not Distribute

9

Best Practices
• Separate complexity into abstraction layers for ease of implementation, maintenance, and extensibility:

• DB Connection

• DB Authentication

• Result Set Iteration

• Column Type Conversion

• Row Comparison

• Business Logic Validation

• Do not store result sets in memory to avoid out of memory exceptions on large data sets: iterate over 
two result sets synchronously instead, one row at a time

• Find a generic internal row type representation suitable for comparison: comparing each pair of native 
row types from all databases involved may be too cumbersome

• Leverage Java collection interfaces for added benefit

Framework Complexity

Test Script Complexity

Presenter Notes
Presentation Notes
The challenges presented by this project were hard to tackle, but not unique and will largely apply to other big data projects. After much research and development this framework implementation experience enabled us to extract some big data validation best practices. Faced with a large and complex problem, it is a good idea to separate complexity into manageable abstraction layers that can be reused, maintained and extended separately. The test scripts should concentrate on business logic validation, whereas the complexity involved in DB connection, authentication, result set iteration, column type conversion and row comparison and validation should be extracted into a framework and managed separately. If you are dealing with large datasets, you should avoid storing them in memory, or else you will risk out of memory exceptions at runtime. A better way to compare result sets is to iterate over them synchronously one row at a time. Different databases, such as Dremio and Athena, may provide different SDKs with different row types. If you need to compare result sets to hardcoded collections, you will have to deal with yet more row types. Rather that comparing each pair of row types directly, it is easier to convert each native type to an internal generic type first, such as a map of strings, and compare generic row types only. Finally, representing result sets as collections using Java interfaces is quite useful and allows you to easily iterate over result sets and compare them to any other collection as required.



TTC Confidential – Do Not Distribute

10

Conclusion
• Test automation of an ETL data pipeline presented some major technical challenges

• Efficient SQL result set comparison between disparate data sources at scale was required

• A modular framework architecture was designed to separate complexity into several 
abstraction layers that enabled easy code reuse and maintenance

• Best practices were extracted from the implementation experience

• Future work includes extension to support Snowflake

Presenter Notes
Presentation Notes
So, it was a fantastic project that presented major challenges and required efficient SQL result set comparison between disparate data sources at scale. A modular, hierarchical framework architecture was designed to overcome these challenges by separating complexity into multiple abstraction layers. This experience enabled us to extract some best practices, which I have shared, that you can apply to similar projects. The DB framework is in demand, and I am now working on extending it to support Snowflake as well.



TTC Confidential – Do Not Distribute

11

Thank You



TTC Confidential – Do Not Distribute

12

Contact Us

25211 Grogans Mill Rd #450
The Woodlands,
Texas 77380
(832) 813-8063
sales.us@ttcglobal.com

Level 6, Cathedral House
48-52 Wyndham St. 
Auckland 1010, New Zealand
+64 9 948 2225
info@ttcglobal.com

Hong Leong Building
6 Raffles Quay, #33-03
Singapore 048581
+65 9822 6679
singapore@ttcglobal.com

154 Lawrence St
Alexandria
Sydney
NSW 2015
+61 2 8999 1965
australia@ttcglobal.com

New Zealand United States Singapore

Australia

25 Crossharbour Plaza #2304
London E14 9SS
United Kingdom
+44 7348 719098
uk@ttcglobal.com

Europe | UK

TTC Confidential – Do Not Distribute

14th Floor, Al Khatem Tower
Wework Hub 71 Abu Dhabi
Global Market Square, Al
Maryah Island Abu Dhabi, UAE
+971 58 5233912
UAE@ttcglobal.com

United Arab Emirates

6 Floor Westport S.No.
32/1A/1/30 to 38 & 54 Pan
Card Club Rd, Baner, Pune,
Maharashtra 411045
india@ttcglobal.com

India


	Database Test Automation Framework: Best Practices
	Agenda
	About Me | Pavel Marunin
	System Under Test
	Requirements
	Why Make a Framework?
	Framework Architecture
	Benefits
	Best Practices
	Conclusion
	Slide Number 11
	Contact Us

