FMG

Advice & Insurance

Migration off Selenium

From Selenium to Playwright and the move towards the testing pyramid. /,




Starting point

* 300 end to end tests

* 1 mock tests or component tests
 Low coverage of unit tests

» 2 days to do release regression testing

* Not a stable test set, so there was a lot of rerunning tests that
were failing.

* Selenium based framework and infrastructure that required a lot
of maintenance






Goal - dream state

* 10 or less end to end tests

* Majority mock(wiremock) and component(storybook) tests
* 80% coverage in unit tests

» Under an hour to do release testing

» Stable test set, so that any failures are a true reflection of a
failing test

* Playwright based framework that is easy to maintain and is
adaptable



Duration between
development & testing

+

INTEGRATION
TESTS

COMPONENT TESTS

UNIT TESTS

Functional/ usertesting:

Business features

Multi-layer technical
features: OTA update,
connectivity. ..

Drivers, services,
business logic...

Methods, functions,
algorithm...

MANUAL TESTING

AUTOMATED TESTING
(REAL-LIFE CONDITIONS)

UNIT/CODE TESTING
(IN DEV ENVIRONMENT)



What we did

« We split our application into 6 relevant sections (flows). End to
End, Add, Edit, Claims, Remove, and Misc

 We then did a risk assessment on the current tests that we had.
We mapped them out to what level we wanted them to be
tested at.

* Then we thought of any tests that we would like to have and
added them into the table diagram



Total unigue sutomation tests 96




How we did it

* Created the end to end tests first to ensure happy path
coverage

* Created the stories for the mock/component tests in Jira and did
estimations based on the first story that was completed.

* Built a plan on how to create the mock/component tests.
* Passed along to our test automation engineers to work on it.



Current State

* 13 end to end tests

* 100 mock and component tests

* 47% Unit test coverage

* Release testing takes 16 minutes to run
» Stable test set

* Playwright based framework that is easy to maintain and is
adaptable



	Slide 1: Migration off Selenium
	Slide 2: Starting point
	Slide 3
	Slide 4: Goal – dream state
	Slide 5
	Slide 6: What we did
	Slide 7
	Slide 8: How we did it 
	Slide 9: Current State

