Moving on from
glest

C NEIL CRICHTON
How to select new tools and migrate your data Ervironman -
November 2025

Merc:ur;/:éj

THE PROBLEM: WHY WE HAD TO LEAVE QTEST

/

License not being renewed due to cost

-

> The Pain Points

— & Expensive: High licensing costs that weren't justified by the value

— |® Slow Innovation: New features took forever to reach the market

— = Poor Al Integration: Limited to JIRA story descriptions only

— ~ Clunky Ul: Navigating through layers of tree structures

— == Team Sentiment: Large negative sentiment across the organization

The Stakes

[20,000 Test Cases 1 [14,000 Executions J [Projects In-Flight J

TOOL EVALUATION: FAST & FOCUSED
> Our Shortlist

— BrowserStack Test Management - Full evaluation
— TestRails - Full evaluation
— Katalon TestOps - Eliminated (wouldn't meet deadline)

> Evaluation Approach

— Decision Maker: Me (with team input)
— Method: Criteria list + analyst trials + informal feedback
— Key Factors:

* Cost and licensing model clarity
» User interface intuitiveness
* Al capabilities

Team buy-in

> Why BrowserStack Won

— & User-Friendly Ul: Intuitive, easy to find test executions

— =l Superior Al: Conversational Al with supporting documentation
— |4 Team Approval: Minimal resistance

— & Cost-Effective: Clear licensing at better price

THE MIGRATION CHALLENGE
>What Auto-Imported

/

. Test Cases
. Test Case Attachments

AV

>What Didn't Auto-Import

/
>{ Test Execution History

2 Test Execution Attachments
X Test Plan Structures

Note: Added to auto-import months later - a con of early adoption!

-

> The Real Challenge

[Data Structure Mismatch: qTest's complex 3-tier structure had to map to BrowserStack's clean hierarchy

THE "AHA MOMENT"

Every gTest element could be reduced to 6 scenarios based on:
» Does it have direct test executions?

» Does it have child test cycles?

» Does it have child test suites?

> Development Timeline

— Week 1: Analyzed qTest projects to identify all data combinations
— Week 2: Built and tested migration script to handle all 6 scenarios
— Result: Successfully migrated 20,000 test cases and 14,000 test executions

[Once categorized, each element mapped cleanly to BrowserStack's Plan — Run — Execution hierarchy

Legend
[[] Decisicn Point
[] Action/Create

Category 1
3¢ Direct Fams
B Child Cycles
¢ Child Suites

— Pazs Through

(qTest Element — BrowserStack Structure Mapping

Analyze Element
Has Diract Tast Fams?
Has= Chuld Cycles?
Has Child SgtasT

_—

Category 2
¥ Diract Fiuns
X Child Cycles
Child Suites

‘Create Test Plan
1 Child Snites create:

N

Category 3 Category 4
B Direct Rims Diirect Runs
¥ Child Cycles ¥ Child Cyeles
¥ Child Suites Chald Suites.

Create Test Flan

Create Test Flan

1 Child Suites create:

More Test Runs

Category 5
» Direct Funs
6 Child Cycles
Child Smites

Create Test Plan

1 Child Suitex create:
Test Rums (nmder Plan)
“Text Execntions
+ Process Child Cycles

Y

Category 6: Catch-All
(ComplexMixed Scenarios)
Dynamic Logic Bazed on Children
A Mever riggered in acmal migration

Test Plan
Top-level container

Groups related test nons
ez "Sprnt 5 Regression®

BrowserStack Target Structure

Test Run
Execohion session
Contams fest execobions
e, "Login Tests - Build 123"

Test Execution
Individual test resnlt
PaszFail'Blocked status.
e.g, "TC-001: Valid Login®

The "Aha Moment"

qTest's 3-tier structure (Releases/Cycles/Suites) with complex nesting patterns
could always be reduced to 6 decision scenarios based on:

Does it have direct test runs? » Child cycles? * Child suites?

Omce categorized, each element maps cleanly to BrowserStack's Plan — Run — Execution hierarchy

EARLY ADOPTION: RISK VS REWARD

BrowserStack Test Management had been on the market for only a few months when we migrated.
We already used other BrowserStack products.

K The Risks \ /@The Rewards \

) ""'ss".‘g Featur_e_s.: Some L » Direct Line to Product: Feature
reporting capabilities weren't built .
requests prioritized

yet . \ _ .
- Manual Migration: Built scripts Rapid BUQ_ F_'Xes- Issues
resolved within days

for data that later auto-imported] T
. . : * Influence Direction: Helped
* Minor Bugs: Small issues in
mold the tool for our needs

accelerated development « Ecosystem Access: Access to
« Workarounds: Had to pull data y '

. PMs on other BrowserStack tools
Kwa API for custom reports / \ /

[Bottom Line: Being an early adopter gave us a seat at the table to build the tool we needed. }

LESSONS LEARNED: WHAT I'D DO DIFFERENTLY

1. Engage Vendor Developers Earlier

The Issue: Built complex migration logic the vendor might have accelerated.
Next Time: Discuss complex challenges with dev team early.

2. Be Ruthless with Data Culling
4)

The Reality: ~40% of migrated test cases were outdated.
The Mistake: People panicked about losing data despite backups.
Next Time: Set clear criteria. Archive, don't migrate old data.

- J

3. Evaluate More Options

Next Time: Add one or two more tools to evaluation list for better perspective and
negotiating leverage.

KEY TAKEAWAYS

When Evaluating Tools:

« Get hands-on feedback from actual users
» Cost matters, but so does licensing clarity
« User experience drives adoption

\.» Consider vendor's innovation velocity

'When Migrating Data:

» Understand both data structures completely
« Look for patterns to reduce complexity

* Be ruthless about what needs migrating

\.* Build in validation and testing time

A

/' On Early Adoption:

« Sometimes "risk" is actually opportunity
« Direct product team access is invaluable
* Your input can shape the tool's future
< Have backup plans for missing features

AN

10

Q&A

 J

Discussion Point:
“How does your team balance innovation risk vs. stability when adopting new tools®?”

Classification: Genera

	Slide 1: Moving on from qTest
	Slide 2: The Problem: Why We Had to Leave qTest
	Slide 3: Tool Evaluation: Fast & Focused
	Slide 4: The Migration Challenge
	Slide 5: The "Aha Moment"
	Slide 6: Migration Logic Diagram
	Slide 7: Early Adoption: Risk vs Reward
	Slide 8: Lessons Learned: What I'd Do Differently
	Slide 9: Key Takeaways
	Slide 10

